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Elasticity of Gaussian and nearly Gaussian phantom networks
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We study the elastic properties of phantom networks of Gaussian and nearly Gaussian springs. We show that
the stress tensor of a Gaussian network coincides with the conductivity tensor of an equivalent resistor
network, while its elastic constants vanish. We use a perturbation theory to analyze the elastic behavior of
networks of slightly non-Gaussian springs. We show that the elastic constants of phantom percolation networks
of nearly Gaussian springs have a power-law dependence on the distance of the system from the percolation
threshold, and we derive bounds on the exponents.

PACS numbses): 62.20.Dc, 61.43j, 64.60.Fr, 65.50tm

[. INTRODUCTION between bonded atoms is very different from that of a Gauss-
ian spring, theeffectiveinteraction between somewhat more
Rubber and gels are large polymeric solid networksdistant atoms is, almost always, quadratic. This is a well-
formed when polymers or monomers in fluid solutions areknown feature of long polymer chairjg], but it has also
randomly cross-linked by permanent bonds. This process iseen demonstrated for more complicated netwdts de
called vulcanization or gelation, where the latter term usuallyGennes used an analogy between the elasticity of networks
applies to cross-linking of monomers or very shortof Gaussian springs and the conductivity of random resistor
polymers—gels, while the former term usually describes thanetworks[6], and argued that rigidity, just like conductivity,
formation of dense networks of long polymers — rubber.appears at the connectivity threshold, when a macroscopi-
Rubber and gels are much more flexible than ordinary cryseally large network spans the system. He further argued that
talline solids and, moreover, may remain in the linear elasti@t the phase transition the shear modulus and the conductiv-
regime even in response to deformations increasing their dity should have the same dependence on the distance of the
mensions far beyond their original, unstrained, size. Such aystem from the connectivity threshold. Surprisingly, the de-
behavior is attributed to the network structure of these matetails of the argument of de Gennes have never been worked
rials, and to the fact that the elastic restoring forces are obut, i.e., there is no detailed calculation of the quantities
entropic, rather than energetic, origin. The simplest theory otharacterizing the elastic response of Gaussian networks,
rubber elasticitywhich captures these essential physical feanhamely the stress and elastic constants tengdtsere are
tures is the “phantom network’(PN) model introduced by several analytical studies of the statistical propertiesiud-
James and GutHl]. This model assumes that the configura-ing the elastic properti¢sof systems of Gaussian springs
tions of the different polymer chains are independent of each2,7], but none of them makes such an explicit calculafion.
other, and neglects the excluded volume interactions bdn Sec. Il of this paper we derive exact results for the stress
tween the monomers. With these simplifying assumptionsnd elastic constants of Gaussian networks. We prove that
one can treat each polymer chain in the network as an idedhe stressensorof a Gaussian elastic networkesgjualto the
one. By averaging over the positions of the monomers oneonductivitytensorof an equivalent resistor network. A de-
finds that the probability density of finding chain ends sepatailed proof of this equality, which holds for a Gaussian net-
rated byF takes a Gaussian formexd —2Br?], whereB  work of arbitrary topology, is given in the Appendix of the
usually depends on the temperatiitélhe free energy of the paper. We also show that the elastic constants of a system
chain is proportional tdminus the logarithm of this prob- consisting of a single spanning cluster of Gaussian springs
ability density and, therefore, is proportionalrt as if itis  vanish We discuss the effect of the finite clusters which
a linear spring of vanishing equilibrium length, which will be model the small molecules formed in the process of cross-
called Gaussian springln the PN model, the thermal aver- linking and show that they play a crucial role in stabilizing
ages of some quantities can be calculated analytically due tihe system.

the Gaussian form of the statistical weigh], and this In Sec. lll we investigate the elastic behavior of phantom
makes it an excellent starting point for models with excludedhetworks of nearly Gaussian springs, whose energy depen-
volume interactions and entanglemefg$ dence on their extension includes a small quartic term addi-

The problem ofgel elasticity introduces an additional tional to the quadratic one. A perturbative analysis yields an
complication already at the level of the PN model. In gels theexpression for the elastic constants. In Sec. IV we use this
network strands are very short and do not necessarily reexpression to evaluate the elastic constants of phantom per-
semble Gaussian springs. Nevertheless, one may still comrolation networkg8], close to the percolation threshabq .
struct a Gaussian model of gel elasticity simply by replacingWe conjecture a universal scaling law for the elastic con-
each bond of the gel by a Gaussian spring. In the absence sfants,C~ (p—p.)?Y, and derive exact bounds for the scaling
excluded volume interactions, the validity of this model is exponenig. Section V includes a short summary and discus-
justified by the fact that even if the elementary pair potentialsion of the main results.

1063-651X/2000/6(5)/60949)/$15.00 PRE 62 6094 ©2000 The American Physical Society



PRE 62 ELASTICITY OF GAUSSIAN AND NEARLY GAUSSIAN . .. 6095

II. ELASTICITY OF SYSTEMS OF GAUSSIAN SPRINGS—

EXACT RESULTS /! _ intemmal atoms
N . . g / surface atom
A. Definitions in the theory of elasticity l
The theory of elasticity describes deformations of thermo- | e

dynamic systems in response to external forces. At a finite| | P
temperature, it is convenient to considemogeneoudefor-

mations of theboundariesof the system, which can be de- AN
scribed by aconstantmatrix M;;. When the system is finite free clusters
strained, the separation between a pair of surface points \ ]
which prior to the deformation wWaR, changes to C ;‘ .
. J\/\/\)‘ ¢ finite non-free cluster

ri=MiRy, (o e fﬁ \rj_rf

where the subscripts denote Cartesian coordinates, and surr "
mation over repeated indices is implied. Usually the energy o _
of the system depends on the relative distances between the FIG. 1. A schematic picture of a network of springs. The system

atoms. The squared distance in the deformed system is equBfludes a spanning elastic network as well as some finite clusters.
to Atoms can be either internal, i.e., free to move inside the volume, or

external, i.e., attached to a permanent positions on the boundaries.
Non-free-clusters have at least one external atom.
r2=rre=MRMRj=(M'M); RRj= (8 + 27, RiR; ,
2) B. Description of the system

whereM' is the transpose dfl, and 7; is thestraintensor, ~_ We consider al-dimensional system shown schematically
while &; is the Krnecker delta. The strain tensor vanishes atn Fig. 1. The black circles in Fig. 1 represent atoms while

energy density in the strain variables which connect them in a certain fixéduenchegltopology.
Atoms that are found inside the volume of the systems are

1 calledinternal atoms.Surfaceatoms have fixed coordinates
f({n})=F({0}) + oy mj + Ecijkl 7ijmat---, (3 on the boundaries of the system. The bonds connect atoms

into clusters. Clusters containing only internal atomsfere

to move in the entire volume. Clusters with both internal and
we identify the coefficientsr;; as the components of the surface atoms are non-free. Among them, ¢ared, in some
stresstensor, whileCj;, are theelastic constantésometimes  cases, severainay extend from one side of the system to the
referred to as thelastic stiffness tensprThe elastic con-  opposite side. This is the “spanning” cluster.
stants of a thermodynamic system are related to each other The system that we study in this section consists of point-
through certain equalities. The actual number of independenike atoms connected by Gaussian springs. The energy of
elastic constants depends on the symmetries of the systeach Gaussian spring is given by
Isotropic systems, for instance, have only thddéerentnon-
vanishing elastic constant€;;=C,,xx= Cyyyv=C;s721 C12 O S
=Cyyyy=Cyyz=Ciso=---; and C44Ey%y(yéxyxy+cxyyx) dap(R —R'B)—EK P(R*—RP) =5K B(RP)2, (6)
=... . Moreover, these three elastic constants obey an addi-

tional relation[9]: Cy;— C4,=2Cy4, which reduces the num- whereR* andR* denote the positions of atorasand, and

ber of independent elastic constants of isotropic systems tRr*# js the distance between these atoms. The spring constant
two. Frequently, one finds it more useful to describe thQ(a:B is assumed to have a fixed_:'mperature_independent
elastic behavior in such systems in terms ofshearmodu-  yajue. The total elastic energy is given by the sum over the

lus M and thebulk modulusk, defined by[].O] energies of all the springs
—CuP, (4) 1o
S E= $us= > FKPRD)2,
(aB) (aB)
and

C. Elasticity of the system

1
E(Clﬁ C,p for two-dimensional systems The components of the stress tensor of our system are
related to the pair potentials&aB(Raﬁ), via the relation

1
§(C11+2C12+ P) for three-dimensional systems,

1 RY¥PRE\  NKTS
= ' (R%B iy ij
(5) Tij Vi <%> ¢aﬁ( )

I
Re8 AV

whereP = —o,,= — o, = —0,,is the pressure. Whenand  which was derived 30 years ago by Squire, Holt, and Hoover
u are positive, the system is mechanically stdlilg]. [12] as an extension of the Born and Huang theory of elas-
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ticity [13] to systems at finite temperature. In expres<ion E. Elasticity of the spanning cluster
summation over 32 distinct pairs of atomsp, is performed, The stress and elastic constants of the spanning network
whereR"™" and Rj" are theith and thejth Cartesian com-  of Gaussian springs with temperature-independent force

ponents oR*#=R*—R¥. The symbol ) indicates a thermal constants are temperature independdiite free energy of
average, whiléN andV denote the number of internal atoms the spanning network is a function of the temperafiand

and the volume of the system, respectively. For potefial the positions of the surface atofRS}. If the values of these

the expressiort7) reduces to variables change quasi statically, then
1 NKT 2 =
U'ij:v< > KaBRiaBRjaB>_Tgij , (8) dF=—-SdT+, for dRS, (12
(ap) s
where the sum is over the connected pairs. whereSis the entropyfS,, is the external force which drags

The two terms in expressioi) are called the configura- e gyrface ators, and summation is made over all the sur-

tional and kinetic terms, respectively. The configurational ace atoms. In a quasistatic process. the fci@ is balanced
term can be divided into terms, each one including the su ' a P ' %

over the bonds of one distinct cluster. Since there are n8Y the forcef® applied by the network on atos) namely,
excluded volume interactions, these terms are independent of

each othelthe clusters do not interact with each othemnd 2 2 ©3n 3s

the contributions of the different clusters to the stress are —fo=={ 2 K*(R*—R") ), (13
additive. We identify the stress applied by each cluster as ¢

NKT where summation is over all atonas connected to ators.
aﬁ'“Ster:v Y KePRMROE) - -~ % © The terms appearing in the thermal average in @8 are
(@) e cluster linear in the coordinateR®. Since the Boltzmann weight is a
Gaussian, i.e., an exponent of a quadratic form of the coor-
dinates, these averages coincide with the most probable val-
ues, namely their values at the energetic ground state, and
D. The contribution of the free clusters therefore do not depend on the temperature. We thus con-

The gas of free clusters is an ideal g&snce the different ~ clude thatf® is a temperature-independent quantity, and from
clusters do not “feel” each other, it is intuitively clear that Eds.(12) and(13) we readily find that
the contribution to the stress of each free cluster should

whereN;, is the number of internal atoms of the cluster.

be as of a pointlike atom. To prove this resulthich is 9°F oFs
general and does not depend on the particular form of the P
pair potential, we use the fact that for a free cluster, one can JTIR

integrate outd degrees of freedonfof say, R') in Eq. (9),

and express the terms appearing in it in the relative coordiThe last result implies tha can be decomposed into two
natesR*=R*—R! {a=2,... N,}. (This statement is cor- Pars

rect only in the thermodynamic limit, when the linear size of

the system becomes much larger than the radius of gyration F(T,{QS})Z Fu(T)+ |:2({|:§S})_

of the free clustej.One can easily verify that in the relative

coordinates E¢9) may also be written in the following way: If we consider homogeneous deformations we may define a

1 < Ny IE > N kT reference system and use the strain variapigg, instead of
3 - {R%,

Uij:v ~, Ri &f{]‘” Ttsij,

which from the equipartition theorem givesr;;= F=Fa(M)+Fa({m}).

—(kT/V)&;; . The stress applied bgll the free clusters is

simply The stress and elastic constants are the coefficients fvthe
expansion of, [see Eq(3)]. Therefore, they do not depend
Nok T on the temperature.
oifjcz v Sij » (10 The stress applied by the spanning network is equal to the

conductivity of a resistor network with the same topology.

The stress of the spanning clusts Eq. (9
whereNg is the total number of free clusters. Similarly, the P g tepa [Eq. (9]

contribution of the free clusters to the elastic constants is
also as of an ideal gas, given by the kinetic tdag] O__S_pczl S KeBRafRaS) — N kT 5
UV (afiespe b v
0 2NokT

kK= Sil Sjk - (11

can be rewritten in the form
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1 Ny JE problem to an electrostatic one. In fact, we haveifferent
spe_ __ 2 R® +< Z K“SR?RJ-S"‘> electrostatic problems corresponding to each Cartesian com-
a=1

N IRY ponent of the mechanical problem. They differ from each
. other in their boundary conditions, namely the values of the
N kT electric potential on the surface nodég;}. In thejth elec-
Ve Sij » (14 trostatic problem, we set® equal toR?, i.e., we assume that
the electric potential at each boundary point is equal to the

where the first sum is over all the internal atoms while thel thT(r:]ar'Fet&an f[:_oordmat? of the p_omth tis th | f th
second sum is over all the bonds connecting internal and € interesting question now 1S what IS the anaiog of the

surface atoms(The subscripts and « denote surface and stress tensqr .in the electrostgtic problem. This appears to be
internal atoms, respectivejyin the thermodynamic limit we the conductivity tensok; defined by

deduce from the equipartition theorem that the first and the

third (kinetic) terms in Eq.(14) cancel each other. We are (i =3i(E),

thus left only with the second term

(as)espc

where(j) and (E) are thevolume averagesf the current

density and the electric field, respectively. More precisely, if

we follow the mapping defined above we have #aact
The thermal averages in EfL5) are of quantities which —equality

are linear in the coordinates of the internal atoms and there-

fore may be replaced by the equilibrium values of these

quantities(see earlier in this sectignThe equilibrium values

of R* minimize the energy of the spanning cluster

1
spe_ | S Kaspe(RSe
7ij V <as)espcK RI(RJ N @39

Uij=2ij. (18)

A detailed proof of this equality is given in the Appendix to
this paper. Here we just note that the proof consists of two
steps: In the first step we show that in tjth electrostatic
problem, because of the choice of boundary conditi()ﬁ$,

d
1 is a unity electric field pointing in the—{j)th direction. In
ZKeB(RY— RB)2

121 > 2K (R —R}) the presence of such an electric fidld)=—2X;;. On the

1 - o
ESPe— 2 _Kaﬁ( RY— RB)Z
(ap) e spc

(ap)e ;
J e next step of the proof we show that(j;), and therefore;
are given by the electrostatic equivalent of EtH)
=3 e ag o ! =
=1
1
The dependence d&*"°on the componentR* correspond- 3iP=g > KR (@%— 99|, (19

ing to one Cartesian directignis included in the terni;®. (as)espe

The problem of finding the equilibrium values & de-
couples intod scalar problems of finding the equilibrium and therefore Eq(18) is valid.
values ofR{". In order to calculate these values we need to The elastic constants of the spanning network vaniga.
solved sets of the linear equatidione set for each Cartesian have already shown thdl;;,, , the elastic constants of the
componeny, spanning cluster of Gaussian springs with temperature-
independent force constants, are temperature independent.
S K*(R*—RF)=0 (17 Therefore, we may calculate them at any temperature, ar)d in
3 i ' particular atT=0. At zero temperature the free energy coin-
cides with the internal energy, given by E(l6), where

corresponding to the vanishing of thth component of the {ﬁ“}, the positions of the internal nodes, take their equilib-
force acting on each internal atorficor each atonw, sum-  rium values. Suppose now that the system is homogeneously

mation in the relevant equation is over all atofhsonnected  strained. The positions of the surface nodﬁ%ﬁ}, change
to it.) according to the linear transformatidf), with a constant
Let us define a resistor network with the same connectivmatrix M;; . [Transformation(1) was originally defined for
ity as the elastic network, in which each spring is replaced byhe separation between surface points. However, we can al-
a resistor with conductandé€*?. The values of the electric ways set the origin of axes to be on the origifistrained
potential at the internal node§e“}, are obtained by mini- surface, and in this case the transformation applies to the
mization of the heat power produced in the netwoF, positions of the surface poinisin order to find the new
=3(apK (0"~ ¢P)?. Except for a prefactor of, P is  equilibrium positions of the internal atoms in the strained
identical withE;P°(16), wheree® plays the role oR". If we  system, we need to solve the set of equatitii® with the
replaceR{" by ¢ in the force equationgl7), we obtain the new boundary conditions. Since both the equations and the
set of Kirchoff equations enforcing the vanishing of the sumtransformation of the boundary conditions are linear, the new
of currents entering the internal nodes of the network. Bysolution is given byr{*=M;;Rj". The elastic energy of the
replacingR;" by ¢, we define a mapping of the mechanical strained spanning cluster is given fsee Eqs(2) and (16)]
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1 lll. ELASTICITY OF SYSTEMS OF NEARLY GAUSSIAN
EsPe=— 2 KaB(raB)Z SPRINGS
2 (af)< spc
The elastic response of polymers and polymeric networks
:E 2 KeB[(MM); R*R*A] is as of systems of Gaussian springs only in the first approxi-
2 (af)e spc e mation. It always includes a nonlinear part, which becomes
significant when the network is sufficiently stretched, much
- } S KeB[(27;+ 8 ) R¥PRP]. beyond its characteri;tic therm.al Ienglﬂ’jsl4]_. In order to
2 (afyespe e study the nature of this correction, we consider networks of

springs having the spring energies
This gives the dependencelbon the strain variables, which
include only linear terms imy; . Since the elastic constants
are the coefficients of the quadratic terms in {hg expan-
sion of the free energjEg. (3)], we conclude that

bap(R)= SKBRA 2+ ZaB(RAY. (21)

Our choice for the spring energy is inspired by the free en-

Ciii=0. (200 ergy of a finite long polymer chaifil], where the leading
correction to the linear relation between the force and the
F. The stability of systems of Gaussian springs chain end-to-end vectof=KR is a term proportional to

We have mentioned earlier in this section that stable solid®®’R. The elastic energy of the system is given, again, as the
thermodynamic systems have positive bulk and sheapum of all springs energies
moduli, x and u [Egs.(4) and(5)]. In phantom systems, the

contributions of the spanning cluster and the ensemble of E= E b

free clusters tac and u are additive. Due to the vanishing of (aB) “p

the elastic constants of the spanning clug2®y, we find that

its contribution to the elastic moduli jg%P*= — P s*°>0, and _ 2 EKQ,B( RA)2+ EaaB(RaB)4
k%P°=0 (two dimensionsor « P°=PsP93<0 (three dimen- (ap) |2 4

siong [P3°is the negativgstretching pressure applied by
the spanning clustérThe fact thatx is not positive means
that the spanning cluster alone is not stable against homoggl\—/

neous volume fluctuations. The contribution of the free clus~'¢ aSSUme thek, <E,, z_and we treat the qua_rt|p term per-
turbatively. In fact, we will make a more restrictive assump-

; aBpRaBy4 <Kk aB(RaB)2 H
=0 and«=NykT/V [see Eqs(4), (5), (10), and(11)]. The t|ondthaft for eaé:h é)onch (R )k<K (R™) _bS!nce theh
vanishing of the shear modulus simply indicates that the colg:Ja _ratlc terme, oes_"not .mla fe any COll:]]tl‘I utlo_nb tq t ef
lection of free clusters is a fluid. The positive contribution of &'Stic constants, we will mainly focus on the contribution o

the free clusters to the bulk modulus is crucial for the stabil-N€ perturbation ter, to them. _ .
ity of the system. Two-dimensional Gaussian networks are !N the lowest order of a perturbation theory, the elastic
stabilized in the presence of free clusters sinece «°P° constants of the network are temperature independguib-

+ k= ©>0. Three-dimensional systems are stabilizegStituting the pair potentia(22) into expression(7) for the

provided that the positive contribution of the free clusters toSLress tensor, and expanding this expression to the first order

=E,+E;. (22)

ters to the elastic moduli is as of an ideal gas, givenu§y

af :

x overcomes the negative contribution of the spanning clus & yields
ter

In real gels, it is possible to wash out the finite clusters oi=0l+ E > a®h( RYP)2RAPRAP
most of them and obtain a so-called dry gel. Within the : VA @B J 0
Gaussian model such a system is expected to be unstable.
This contradicts experimental observations and demonstrates _ eBpaBpal
the importance of excluded volunfgV) and entanglements’ VkT< 5( az,;> KRR | 0B O’ 23

effects. In the presence of EV interactions, the polymer
chains forming the network cannot be treated as Gaussiafjhere SA=A—(A), denotes a thermal fluctuation of the
springs. Therefore, the elastic constants of such networks d(ﬂhantityA and( ), denotes a thermal average with th-

not vanish, and consequently, there is no simple relation b Serturbed Gaussian Boltzmann weight expEy/kT). o is

. ) . O]
tween t_he pressure and _the elastp mpduh. Moreover, Ee siress tensor of the corresponding Gaussian network
interactions make a positive contribution to the pressur%

af= i i -

which may, therefore, be both positive or negative. In dens V::ssrg;b =0), given Ey Eq.(8), which can be also ex

; . . y its value a=0
systems, EV interactions may effectively cancel ¢4t.
However, dense systems can only be achieved in the 1
presence of the finite clusters. In that case different clusters a?j == > [K“B(Rgﬁ)i(Rgﬁ)j]. (24
interact with each other, and their contributions to the pres- V (B)
sure and elastic moduli are not additive. In the following ) ) ) .
section we consider a different correction to the Gaussiaf the above expressuerg‘B)i is theith Cartesian compo-
model: without EV interactions but with a non-Gaussian pairnent of the bond vecthgB at the ground state of the unper-
potential. turbed Gaussian network.
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The next step is to substitute the pair poten¢2®) into  colation thresholdp., quantities such as the mean cluster
the expression for the elastic consta[itg&] [see also Eq(7) mass, typical cluster linear size, and the gel fraction have
in Ref. [15]]. By expanding this expression to the first order power-law dependence op{ p.). The relevant exponents
in {a*}, and using the fact that for the Gaussian networkare universal and depend only on the dimensionality of the

Cijki=0 (20), we find that system, but not on the atomic-scale features of the system.
5 The values of these exponents have been measured experi-
Cijk|=—< > aaﬁR?BszﬁRﬁﬁszﬁ> +(X)o, mentally for various gel systenj46]. A fairly good agree-
V' (aB) o ment has been found between the measured exponents and

_ o o their values as predicted by the percolation model, which
whereX is a combination of terms, each of which includes proves the applicability of the percolation model to gelation.

the thermal fluctuations of some quantities. Sincel at0 The situation concerning the elastic behavior of gels is not
there are no thermal fluctuations, that term vanishes and W@t clear. The main question is whether the shear modulus
readily find that also follows a scaling lave~ (p—pe)" with a universal ex-
2 ponentf. Experimental values of this exponent measured for
Cij(T=0)= v< > aaBRiﬂ'BRjﬂﬁRgBRﬁﬁ> different polymeric systems are very scatteféd]. On the
(B) 0 theoretical side, it has been demonstrated that-ad, the

elastic behavior of percolation systems depends on the nature
of the interactions in the system. For nonstressed central
force networks the rigidity threshold occurs at a concentra-
(25  tion of bonds much larger thap. [18]. If bond-bending
o o . forces are present, rigidity and percolation thresholds coin-
The second equality in the above equation is obtained byjqe: however, the rigidity exponehis considerably larger
equating the expression inside, to its value at equilibrium than the conductivity exponertt suggesting that the two
(at zero temperature the thermal average coincides with thiﬁroblems belong to different universality clas§&s]. As the
valug. number of models of elasticity of random systems increased,

At a finite temperature we may write the elastic constants ) . )
- . : . it became clear that de Gennes’s conjecture about the iden-
as the product o€;;,; (T=0), and a dimensionless function,

which may depend only on terms of the form tity .Of t.h_e exponepf .to the conduc_:tivity exponertt[6] can
(KT a*#)/(K*°K<(). Expanding the function into a power be Just!fled onIy.Wlthln models which “reduce” the thermo—
series in these variables yields dynamic behavior of gels to so-called “scalar elasticity”
models[20]. Recently, the equalitf =t was measured by
KT aaﬁ] ) Plischkeet al.in a numerical study ophantomcentral force

2
=V &, [ (RERS) (REP)(RE)1)

1+

Ciji = Cijin(T=0) percolation networks alT+#0 [21]. The authors attributed
this elastic behavior to the entropic part of the elastic free

energy.

K 79K €¢

linear terms ir{

N

B. Elasticity of percolation networks
SinceCjj(T=0) is a linear function in the quantities®”?,
and since we are interested only in the first-order correction We would like to apply our results from Secs. Il and Il to
due to the perturbatiomamely, in terms linear ia*?), we  phantom percolation networks of identical springs having the
conclude that to the lowest order &#, Cj;, are tempera- energyE=3KR? (Gaussian netwojkor E=3KR*+ ;aR*
ture independent, and are therefore given by the above exnearly Gaussian networkWe discuss the critical elastic

pression(25). behavior of such networks in the regime where the correla-
tion lengthé~(p—p;) 7 is much larger than the character-
IV. ELASTICITY OF PHANTOM PERCOLATION istic atomic length scalb, but much smaller than the linear
NETWORKS size of the systeni. The correlation length is the length

) scale below which the spanning cluster has a fractal structure

A. The percolation model and above which the system is homogeneous. A quantity that

One of the models which has been proposed to describ@llows a power law asg—p.) Y~ & ") whenL> ¢ scales
the process of gelation jgercolation[8]. In the percolation asL~(Y"") whené&>L. (At p, the latter power law is always
model, the sites or the bonds of a lattice are randomly occurelevant becauség is infinite) Since é>b, we expect the
pied by, respectively, atoms or bonds, with an occupatiorstructure of the spanning cluster to “forget” the details of
probability p. In the site percolation model, one links every the lattice, and have the elastic properties of an isotropic
two neighboring occupied sites, while in the bond percola-system. In the Gaussian case, the tensorial equality
tion model one assumes that all the sites are occupied by X; (18) becomes a scalar equalityP=23.. Also, because
atoms and each pair of neighbors is linked if the bond beof the vanishing of the elastic constants of Gaussian net-
tween the atoms exists. Within the percolation model, the gelvorks (20), we have for the shear modulus of the spanning
point is identified with the percolation threshold, the critical cluster thatu=C4,—P=—P=3 (4). Close to the percola-
site or bond concentration above which a spanning cluster igon threshold, the conductivity scales 3s-(p—p.)', and
formed. The percolation model predicts that close to the pertherefore we conclude that for Gaussian networks
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uw=—P=3~(p—po)", (26) contribution of the quartic term to the spring energy is small

compared to the quadratic teffaq. (21)]. This happens only

in accordance with de Gennes'’s argument. This result is ndf the bond length satisfies

changed if we also include the finite clusters, since the latter

make no contribution to the shear modulijsst as they do Rpond< (K/a)*2. (29

not contribute to the conductivity of the systerfthe equal-

ity of the shear modulus and the stress, a signature of Gaus$he longest bonds in the network are the bondsithsitle a

ian elasticity, was observed numerically in REf1]. cell of size& serve as SCB’s. Close tp., their length

In the nearly Gaussian case, we have from @8) that  scales like

the leading term in the expression for the stress is the Gauss-

ian term, and therefore we expect to have the same scaling Ry~ & V"4 D~ (p—p)t " V=(p—p.).

behavior as in Eq(26). What distinguishes non-Gaussian

networks from purely Gaussian ones is the nonvanishingn two dimensions the exponeyt 0, which implies that the
elastic constants of the former. For percolation networks it if’tength of the SCBs diverges, and certainly does not satisfy
reasonable to assume that the elastic constants also followcgiterion (28). The problem is not limited to the SCBs only,
power lawC~(p—pc)?. The elastic constants of a nearly put is relevant to a larger fraction of the bonds, including the
Gaussian network should be “almost” zero, namely muchdgoubly connected bonds, triply connected bonds, and so on.
smaller than the network stress. Therefore, the perturbativg is difficult to predict, a priori, whether this observation
analysis in Sec. lll would be self-consistent only if it yields should modify the results of the nearly Gaussian model from
that the exponeng>f. We can use expressid@5) for the  Sec. I1I. Note that we do not encounter such a problem for a

elastic constants to derive exact bounds on the value of tr@imensiona"ty |arger than two, where the exponﬁm posi_
exponentg. Consider a percolation network of linear size tjye.

in d dimensions ap.. An upper bound on the exponemnts
obtained by including only a partial set of the bonds of the
spanning cluster in the sum in expressi@s). We take the
set of singly connected bondSCBS, which are such bonds e have studied the elastic properties of phantom Gauss-
that removal of each one of them disconnects the spanningn and nearly Gaussian networks. For Gaussian networks,
cluster. Their number scales BS” [22]. The force acting on  the stress and elastic constants were calculated exactly. We
a SCB is the total force applied on the surface of the systenfound that a characteristic feature of Gaussian networks is
which is proportional toPL{@~ D~ (“¥**d=1) The length  the vanishing of their elastic constants. This feature is both
to which a SCB is stretchedR(scg)o, is proportional to the  temperature and network-topology independent. We also

V. SUMMARY AND DISCUSSION

force, and therefore has the same scaling form proved the equality between the stress tensor of a Gaussian
elastic network to the conductivity tensor of a resistor net-
(Rscg)o~ LY *a71), (27)  work, in which the conductance of each resistor is equal to
the corresponding spring constaét”. This result quantifies
and consequently from E¢25) we get the somewhat vague statement about an analogy between
C L9/ O U a(-trtd-1) ﬁlé;lt\s;;i(;:ritk); of Gaussian networks to conductivity of resistors

We have investigated the nonlinear correction to the elas-

which yields the upper bound<(4t—1)—»(3d—4). A" {ic pehavior by studying the properties of networks of
lower bound forg is obtained by noting that for any bond gpings whose energies include small quartic terms in addi-

other than the SCBSRpond o< (Rsca)o- That is because the (ion 1o the leading quadratiéGaussian terms. While the
SCBs are the only bonds which experience the total forcgress tensor is still dominated by the contribution of the
acting on the system. We use this fact in expresé@and  gyadratic term, the elastic constarihich vanish in the

write that Gaussian netwojkare solely due to the non-Gaussian cor-
1 rection. We calculated the elastic constants to the first order
C~L 9"<[(R 2] = al(R 2| in perturbanon thegry. _
[(Rscalol") 7 b%ds [(Roondo] Finally, we applied the results of both the Gaussian and

the nearly Gaussian models to describe the elastic behavior
The term in braces in the above inequality is, however, proof phantom percolation networks close to the percolation
portional to the pressurgsee Eq.(24)], which scales like threshold. Obviously, the well-known result that the shear
L~Y”. This, together with resul27), brings us to the lower modulus follows the same scaling law~ (p— p.)", like the
boundg=3t—2v(d—1). Using the known values of the ex- conductivity, was recovered. We made a prediction that the
ponentst and v [23,8], we find that in three dimensions elastic constants also follow a scaling la@~(p—pc)?,
2.48<g=<2.6. In six dimensions both bounds coincide towith exponentg>t, and found bounds on the values of the
give g=4. This last result reflects the fact that in six dimen-exponentg.
sions essentially all the bonds that carry the force across the
network are SCBs. In two dimensions we have the bounds ACKNOWLEDGMENT
1.22<g=<1.52. However, we must mention a special feature
of the two-dimensional case which questions the validity of This work was supported by the Israel Science Founda-
the “nearly” Gaussian model. The model assumes that the¢ion through Grant No. 177/99.
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APPENDIX: THE CONDUCTIVITY TENSOR OF FINITE J' B

R af af( «a B B a
RESISTOR NETWORKS qo 1T A=K (@ =R (RF-RE,

We consider a network whose bonds are resistors of con- Wb By B )
ductanceK“?, where the superscripta and 3 label the = Wherel“”=K%(¢“—¢”) is the current across the resistor

nodes which the particular resistor connects. The network igetween nodes and 8. Adding the contributions of all the
finite and has an arbitrary topology, i.e., we make no asfesistors we find that

sumption on the symmetry. We denote@@the position of 1
the nodeB and by¢” the electric potential at the node. The (=< E KB — (Pﬂ)(Riﬁ_ RY).
network is placed inside a rectangular box of voluie V («B)
=L, XL,y,X--- XLy, whereL; is the length of the box along . ) ) )
the ith Cartesian direction(The derivation presented here We may write the last result in a slightly different way
can be easily generalized to systems of arbitrary shape 1
nodes of the network which are located on the surface of the N YB@YB( nY— BV _ RY
system are called surface nodes, and we label them with the {0 ZV[Zy EB K (¢7=¢N(=RY)
superscripts. The rest of the nodes are called the internal
nodes, which we denote with the superscuptThe super- YB@YB( Y — B\DB
scripts 8 and y will be used to denote nodes of both types. +Ey % KFO 7= DR }

The conductivity of an electrical system is a ten&gg

defined by _ l[ S (—RY)
vi< (TR
(I =Zi(Ex), (A1)

% KYB@7B(p7— oP)

|

where the variabl® *# takes the value 1 if the nodesand
where the subscripts denote Cartesian coordinates and surfi-are connected by a resistor and if at least one of them is an
mation over repeated indices is implied, whil® and(E) internal node, and the value 0, otherwise. The sums in square

are the volume averages of the current density and the elefrackets corresponding to internal nodes « vanish due to
tric field, respectively. This definition af;, applies to con-  the Kirchoff “junction rule” for the vanishing of the sum of
tinuous electrical systems. It can be generalized to discretgUrrents entering an internal node,

networks if we define the current density by a set of Difac

functions representing the currents in the bonds. Let us as- E K@BQ (o — oP)=0.

sume now that the electric potentig) applied on the surface B

of the network, is such that on each surface point it is equal

to the jth Cartesian coordinate of the point. Sinée=  We are left with the contribution of the surface nodess

—ﬁ¢, we have only, i.e.,
1
1 iV=— RS KBS@BS(pB— o9} .
-2 v ()-3| S RS koo
g This last result can be also represented by summation over

== f a—)(de all the resistorg as), between surface and internal nodes
-5 —f d8+f ds iD=| S Ko ¢%)

V Xk=Lk(P Xk=O(P ' I V <0[S> I .

where the surface integration is over the boundaxigs0  Finally, since the electric field is equal {&,)=— &;, we

andx,=L,, normal to thekth direction. However, with our have from Eq(A1) that

choice for the electric potential on the boundaries; x; , it

is easy to see thdE,)=— &y;, wheredy; is the Kraecker T ”_i

delta. <]'>_E'J_V
The mean current density;) is given by

(E) KR ¢5— %)

as

We have obtained expressi¢i9), which we constructed by
. 10, mapping expressiofll5) for oy; into the electrostatic prob-
()= Vj jidVv. (A2) " |em. This proves that indeed;; =3;; . Note thatS;; does
not depend on the positions of the internal nodes but only on
As we have already noted, the above definitig2) applies  the details of the conductivity. In large random networks the
to continuous electrical systems. To make it applicable tdelation(Al) suffices to defin&;; without need of a detailed
resistor networks we need to write the current density as &Pecification of boundary conditions. However, exactre-
sum of Dirac é functions representing the currents in the Sult is valid also for small networks of arbitrary topology,
“linear” resistors. With this formal representation, the con- provided that the electric fiel& is generated using the very
tribution to (j;) of each resistor is given by the line integral specific boundary conditions specified in the Appendix.
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